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Abstract:

In this paper the controllable differential inclusions with parameters
is considered. The time optimal control problem for ensemble of trajectories
is researched. The theorem of existence and conditions of optimality are
Euro Asia obtained.
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Conferences

1. Introduction.

Control and observation problems under conditions of uncertainty are models of real situations that
take into account information constraints. They relate to special control problems for dynamic systems. In
studies of such problems, much attention is paid to various properties of an ensemble of trajectories and a set
of attainability, methods of forecasting and estimating the phase state, and minimax synthesis [1, 2].

Various classes of controlled differential inclusions and their discrete analogs can be used as a
mathematical model of control systems under information constraints [3-10]. Differential inclusions find
effective applications in the study of such important issues as the existence of optimal control, the
dependence of optimal trajectories on the initial data and parameters, controllability o semble of
trajectories, necessary and sufficient conditions for optimality.

2. Statement of the problem. Consider a differential inclusion of the form

X e A(t)x+B(t,u,q), x(t,)eD,ueV,qeQ,teT, =[t,,+0), )
where x - n - state vector, u - m - control vector, q - kK - vector (parameter),
B(t,u,q)cR", DcR",VcR", Qc R".
A measurable m - vector function U = u(t),
system (1) if u(t) €V almost everywhere on T (u).
An admissible trajectory correspondlng' 0 an admissible control U=u(t), teT(), and a
parameter <€ Q is called an absolutely continuous n-vector function X(t) = x(t,u,q) that satisfies the
differential inclusion (1) and the initial condition T(u) almost everywhere on X(t,) € D.

We denote by U(T,) the set of all admissible controls defined on T, =[t;,a]. Let H; (u,q,D) be
the set of all admissible trajectories corresponding to admissible control u eU(T,), parameter g € Q and
iniial - set D. Put X; (t,u,q,D)={¢:&=x(),x() e H; (u,q,D)}. A multivalued mapping
X, (t,u,q,D),t €T, is called an ensemble of trajectories of a differential inclusion (1) corresponding to a

| (u) =[t,,t, (u)], is called an admissible control for
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control ueU(T,), a parameter q<Q and an initial set D. In [4,6], the continuity, closedness and
convexity of multivalued mappings (u,q) —H (u,g,D) and (t,u,q) — X, (t,u,q, D) were studied.

Definition. We will say that an admissible control u U (T,) and a parameter q<Q transfer the
ensemble of trajectories of a differential inclusion (1) into a movable terminal set Y (t) if there is a number
t(u,q) T, such that:

X, (t(u,9),u,q,D)c Y (t(u,q)) 3

Note that in definition t(u,q) is the first moment of time when the ensemble of trajectories is
transferred to the terminal set Y (t), i.e. along with condition (2), it is assumed that the relation
Xy (tu,g,D)\Y ()=, t, <t <t(u,q). (3

Let U be the set of all admissible controls. We denote by W (U,Q) the set of all admissible pairs
(u,q) eU xQ that translate the ensemble of trajectories of the differential inclusion (1) into the set Y (t).

Relations (2) - (3) on the set W(U,Q) define the functional t(u,q). Consider the time optimal
control problem: find a control u” eU(T,) and a parameter g €Q that minimize the functional t(u,q), i.e.

tu’,q")=inf {t(u,q):(u,q) eW(U,Q)}. (4)

By solving the time optimal control problem we mean the optimal pair (u”,q") and the optimal time
t"=t(u,”q).

3. Main results. The control system (1) will be studied under the following assumptions: 1) the
elements of the matrix A(t) are summable on each segment T,cT_ ; 2) for any teT_,

ueV,qeQ the set B(t,u,q) is compact from R"; 3) for any T, T, multivalued mapping
(t,u,q) > B(t,u,q) is measurable in teT,, continuous in (u,q) eV xQ and there exists a function T,
summable on A(t) such that sup{y|:y € B(t,u,a)}< B}, (tu,q)eTxVxQ; 4) for each teT,,
w € R" the support function C(B(t,u,q),w) (C(P,w)=sup(P,w), P < R") is convex in (U,q) eV xQ;

peP
5) for each teT,_ the set Y(t) is convex and closed; 6) multivalued mapping t — Y (t) is continuous on any
segment T, cT_;7) D < R" are compact sets,and V <« R"™, Q< R are convex compact sets.
Under these conditions, the multivalued mapping (t,u,q) — X, (t,u,q,D) is continuous on
T, xU(T,)=Q, and the support function C(Xy (t,u,q,D),y) is convex in (u,q) € U(T,)x
We put W(T,,U,Q)=WU,Q)NU(,)xQ). It is clear that if W(T,,U,Q)#
pair (U",q") is an element of the set W (T ..U, Q) and the optimal time t~ satisfies the
" =inf {t(u,q):(u,q) eW(T,,U,Q)}.
Theorem 1. If the set W(T,,U, Q) is nonempty, then a solution in the ti
(4) exists. _ i V '
Now let us consider the functional /
M, (t,u,0) =mg[C(XTa (t,u,q,D), ) = C(Y (1), w)]. teT,, ueU(T,).

The functional , (t,u,q) is continuous on T, xU(T,)xQ and convex in (u,q) on U(T,)xQ.

problem

Theorem 2. In order for the control u” eU(T,), parameter q € Q and time moment t* €T, to be
optimal in the problem (2), it is necessary and sufficient to satisfy the following conditions:

a) 4,(t,U7,q) = min u,(t",u,q)=0; )

uey (Ta)rqu
b) t” is the minimum root of the equation
min . (t,u,q)=0,teT,. (6)

ueU (T,),qeQ
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4.Conclusion. Theorem 2 gives necessary and sufficient optimality conditions expressed in terms of

a special functional g, (t,u,q). Under additional conditions with respect to the right-hand side B(t,u,q) of

the differential inclusion (1), from these optimality conditions (5) and (6) can be obtain the optimality
conditions in the form of the supporting maximum principle. The results obtained can be used to study
control systems under conditions of inaccurate information about the current state and external influences.
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